Chapter 1 Homework Answer key

Section 1.2
8) Why is an objects mass rather than weight used to indicate the amount of matter it Contams?
Weight is a force that is proportional to gravity. Thus objects weigh differently in in different gravitational fields (moon vs earth). Mass is m dependent of gravitysame mass on the moon as on earth.
11) How does a homogeneous mixture differ from a pure substance? How are they Similar?
Differ in ratios

Homogeneous mixture

$100 \mathrm{~g}^{\mathrm{NaCl}}$

$0.07 \mathrm{gMaCl}^{\mathrm{Na}}$
$100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$

$0.10 \mathrm{~g}_{\text {salt }}$ $100 \mathrm{mLH} \mathrm{H}_{2} \mathrm{O}$

All homogeneas but different ratios of salt to water

Pure substance

Ethanol

$$
\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}
$$

Always same ratio

Similar in Consistent within sample

13) How do molecules of elements and molecules of Compounds differ? In what ways are they similar?
Similar in that they both have multiple atoms bound in chemical bond.
molecules of Elements
molecules of Compounds

$$
H_{2}, O_{2}, N_{2}, S_{8}, P_{4}
$$

$$
\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

Differ in that Elements have single element (Single symbol) while compounds have 2 or more elements
molecules of Elements
molecules of Compounds
$H_{2}, O_{2}, N_{2}, S_{8}, P_{4}$
$\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
16) Classify each as element, Compound, Mixture
a) Copper Cu Element
b) water $\mathrm{H}_{2} \mathrm{O}$ compound
c) nitrogen N Element
d) Sulfur S Element
e) air $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}, \ldots$ mixture
f) Sucrose $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{11}$ Compound
g) a substance composed of molecules I_{2} Element each of which contains 2 iodine atoms
h) gasoline 100's of Compounds \Rightarrow mixture
18) A sulfur atom and a sulfur molecule are not identical. What is the difference?
sulfur Atom Sulfur molecule
S

23) When elemental iron corrodes it Combines with oxygen in the air to form red brown iron(III) oxide called rust.
a) If a shiny nail with an initial mass of 23.2 g is weighed after being coated in rust, would you expect the mass to increase, decrease, or remain the same? Explain. $\mathrm{O}_{2} \quad \mathrm{O}_{2} \quad \mathrm{O}_{2}$

Nail weighed w/ just
Fe. Oxygen not part of nail

Now all Fe still present but w/ oxygen bound to it \Rightarrow Increase in mass
b) If the mass of the iron nail increases to 24.1 g , What mass of Oxygen Combined with iron?

$$
24.1 \mathrm{~g}-23.2 \mathrm{~g}=0.9 \text { g oxygen }
$$

Section 1.3
27) Classify each of the following as physical or Chemical change
a) Condensation of Steam physical
b) Burning of gasoline chemical
c) Souring of milk chemical
d) Dissolving of Sugar in water Chemical
e) Melting of gold physical
29) The volume of a sample of oxygen gas Changed from 10 mL to 11 mL as the temp changed. Is this a plussical ar chemical Change.

$\mathrm{O}_{2} \longrightarrow$| O_{2} |
| :---: | | No change in |
| :--- |
| Composition, just |

$T_{1} \mathrm{~mL}$ | T_{2} volume \Rightarrow physical |
| :--- |
| 11 mL |

Section 1.4
38) Give the name and symbol of the prefixes used with SI units to indicate multiplication by the following exact quantities.
a) 10^{3} kilo k
b) 10^{-2} Cent c
C) 0.1 dec d
d) 10^{-3} millie m
e) $1,000,000=10^{6}$ Mega m
f) $0.000001=10^{-6}$ micro μ
39) Give the name of the prefix and the quantity indicated by the following symbols.
a) C Cent 10^{-2}
e) m mill 10^{-3}
b) d dec 10^{-1}
f) n nano 10^{-9}
c) G Giga 10^{9}
g) p pice 10^{-12}
d) k kilo 10^{3}
h) T Tera 10^{12}
40) A large piece of Jewelry has a mass of 132.6 g . A graduated cylinder mitially Contains $48,6 \mathrm{~mL}$ of water. When Submerged in the graduated cylinder, the volume increases to 61.2 mL
a) Determine the density of the jewelry

$$
\begin{aligned}
& \text { Volume jewelry }=61.2 \mathrm{~mL}-48.6 \mathrm{~mL}=12.6 \mathrm{~mL} \\
& \text { Density }=\frac{\text { mass }}{\text { vol }}=\frac{132.6 \mathrm{~g}}{12.6 \mathrm{~mL}}=10.5 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

b) Assuming the jewelry is made from a single Substance, what is the jewelry likely made of? Explain.
Look at Table 1.4 Ag has density of $10.5 \mathrm{~g} / \mathrm{mL}$ \Longrightarrow material most likely Silver (Ag)

Section 1,5
45) Express each in scientific notation w/ Correct Sig figs.
a) $711.0 \quad 7.110 \times 10^{2}$
e) $0.054995 .499 \times 10^{-2}$
b) $0.239 \quad 2.39 \times 10^{-1}$
f) $10000.0 \quad 1.00000 \times 10^{4}$
c) $90743 \quad 9,0743 \times 10^{4}$
g) 0,0000000738592
d) $134.2 \quad 1.342 \times 10^{2}$ $=7.38592 \times 10^{-8}$
47) Indicate whether each of the following can be determined exactly or most be measured.
a) The number of seconds m hour Def exact
b) The number of pages in book counted exact
c) The number of grams in your weight measured
d) The number of g in 3 kg Def exact
e) The volume of $\mathrm{H}_{2} \mathrm{O}$ you drink in a day measured
f) The distance from $8 F$ to Kansas City measured
49) How many sig figs are contamed in each of the following?
a) 53 cm 2
b) $2.05 \times 10^{8} \mathrm{~m} 3$
C) $80,002 \mathrm{~J}$
d) $9.740 \times 10^{4} \mathrm{~m} / \mathrm{s} \quad 4$
e) $10.0613 \mathrm{~m}^{3} 6$
f) $0.17 \mathrm{~g} / \mathrm{mL} \quad 2$
g) 0.8840055
51) Round each to 2 sf
a) 0.43660 .44
b) $9.000 \quad 9.0$
c) 27,27
d) 135140 or 1.4×10^{2} Round even
e) $1.4197 \times 10^{-3} \quad 1.5 \times 10^{-3}$
f) 0.4455 Round even
53) Perform call \& Report w/ proper Sig figs
a) ${ }^{3} 2^{3} \times 342=2147776=2.14 \times 10^{5}$
b) $5^{3} .63 \times 10^{2} \times 7.4 \times 10^{3}=4166200=4.2 \times 10^{6}$
c) $\frac{28^{3} .0}{13.483}=2.07 \frac{6689164}{5}=2.08$
d) $811^{1} 9 \times 0.000023=0.186737=0.19$
e) $14.9 \underline{8}+27340+84.759 \underline{3}$

$$
\begin{array}{r}
27340.98 \\
+80.759 \underline{3} \\
+274 \underline{3} 9.7393
\end{array}=2.744 \times 10^{4}
$$

f)

$$
\begin{aligned}
& 42.7+0.259 \\
& \begin{array}{r}
42.77 \\
+\quad 0 . \frac{759}{} \\
\hline 42.959
\end{array}=43.0 \text { or } 4.30 \times 10^{1}
\end{aligned}
$$

Section 1.6
57) write conversion factors as ratios Pull these from table 1.6
a) yards in 1 meter $\frac{1.0936 \mathrm{yd}^{d}}{1 \mathrm{~m}}$
b) liters in $1 \mathrm{gt} \frac{0.94635 \mathrm{~L}}{1 \mathrm{~g}^{t}}$
c) lbs in $1 \mathrm{~kg} \frac{2.2046 \mathrm{ks}}{1 \mathrm{~kg}}$
59) The label on a soft drink bottle gives volume in 2 units: 2.01 \& 67.6 floz . Use the information to derive a conversion factor. How many sig figs can you Keep

$$
\frac{67^{3} .6 \mathrm{floz}}{2.0 \mathrm{~L}}=\frac{33.1 .0 \mathrm{floz}}{1 L}=\frac{34 \mathrm{floz}}{1 L}
$$

or

$$
\frac{2.0 \mathrm{~L}}{67.6 \mathrm{floz}}=0.0295850
$$

65) The diameter of a red blood cell is about $3 \times 10^{-4} \mathrm{in}$. Convert to cm .

$$
\begin{aligned}
\frac{1}{3 \times 10^{-4}} \text { in } \times \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}} & =\frac{7.62 \times 10^{-4} \mathrm{~cm}}{} \\
& =7 \times 10^{-4} \mathrm{~cm}
\end{aligned}
$$

67) Is a 197-1b weight lifter light enough to Compete in a class limited to those weighing 90 kg or Less?
Road Map

$$
\begin{aligned}
& 3^{1 b} \rightarrow g \rightarrow \mathrm{~kg} \mathrm{Exact} \\
& 197 \mathrm{lbs} \times \frac{453.6 \mathrm{~g}}{1 \mathrm{lb}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=89.3 \mathrm{fg92kg} \\
& \left\lvert\, \begin{array}{ll}
\text { yes } 89.4 \mathrm{is}<90 \mathrm{~kg}
\end{array}\right.
\end{aligned}
$$

$71)$ use Scientific notation to express each in $8 I$ base unit.
a) $0.13 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=1.3 \times 10^{-4} \mathrm{~kg}$
b) $232 \mathrm{Gg} \times \frac{1 \times 10^{9} \mathrm{~g}}{1 \mathrm{Gg}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=2.32 \times 10^{\circ} \mathrm{kg}$
c) $5.23 \mathrm{pm} \times \frac{1 \times 10^{-12} \mathrm{~m}}{1 \mathrm{pm}}=5.23 \times 10^{-12} \mathrm{~m}$
d) $86.3 \mathrm{mg} \times \frac{1 \mathrm{~g}}{1000 \mathrm{mg}} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=8.63 \times 10^{-5} \mathrm{~kg}$
e) $37.6 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=3.76 \times 10^{-1}$
f) $54 \mu \mathrm{~m} \times \frac{1 \times 10^{-6} \mathrm{~m}}{1 \mu \mathrm{~m}}=5.4 \times 10^{-5}$
g) $1 T_{8} \times \frac{1 \times 10^{12} \mathrm{~S}}{1 T_{0}}=1 \times 10^{12} \mathrm{~S}$
h) $27 \mathrm{ps} \times \frac{1 \times 10^{-12} \mathrm{~s}}{1 \mathrm{ps}}=2.7 \times 10^{-11} \mathrm{~s}$

$$
\text { I) } 0.15 \mathrm{mk} \times \frac{1 \mathrm{k}}{1000 \mathrm{mk}}=1.5 \times 10^{-4} \mathrm{~K}
$$

* Remember that for grams $\Rightarrow \mathrm{kg}=$ base unit?

73) Gasoline is sold by the liter in many countries. How many liters are required to fill a 12.0 gal gas $\tan k$?

Rood Map

$$
\mathrm{gal} \longrightarrow L
$$

$$
12^{3} .0 \mathrm{gal} \times \frac{3.785 \mathrm{~L}}{1 \mathrm{gal}}=45.42 \mathrm{ta}=45.4 \mathrm{~L}
$$

77) Make the conversion indicated
a) $120 . \mathrm{m} \rightarrow \mathrm{ft}$

Road map

$$
\begin{aligned}
& 3 \mathrm{~m} \underset{i}{l} \mathrm{def} \mathrm{~cm} \rightarrow \frac{\mathrm{~m}}{1 \mathrm{cef}} \rightarrow \frac{\mathrm{ft} \text { def }}{1 \mathrm{~m}} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \times \frac{1 \mathrm{ft}}{12 \mathrm{in}}=393.7007874 \mathrm{ft}
\end{aligned}
$$

$$
394 \mathrm{ft}
$$

b) $19565 \mathrm{ft} \rightarrow \mathrm{km}$

Rood map
$\mathrm{ft} \rightarrow \mathrm{in} \rightarrow \mathrm{cm} \rightarrow \mathrm{m} \rightarrow \mathrm{km}$

$$
\begin{aligned}
& 19565 \mathrm{ft} \times \frac{12 \mathrm{~m}}{1 \mathrm{ft}} \times \frac{{ }^{5} \text { def }}{1 \mathrm{im}} \times \frac{1 \mathrm{~cm}}{100 \mathrm{~cm}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \\
& =5.963412 \mathrm{~km} \\
& =5.9634 \mathrm{~km}
\end{aligned}
$$

c) 8.5 in $\times 11$ in in cm^{2}

Road map

$$
\begin{aligned}
\text { in }
\end{aligned} \begin{aligned}
&\left(8.5 \mathrm{in} \times \mathrm{cm}^{2}\right. \\
&(11 \mathrm{in}) \times \frac{\mathrm{def}^{2}}{2.54^{2} \mathrm{~cm}^{2}}=603.2246 \mathrm{~cm}^{2} \mathrm{in}^{2} \\
&=600 \mathrm{~cm}^{2}=\sqrt{6.0 \times 10^{2} \mathrm{~cm}^{2}}
\end{aligned}
$$

d) 161 in $^{3} \rightarrow L$

Road map

$$
\begin{aligned}
& 3 \text { in }^{3} \rightarrow \mathrm{~cm}^{3} \rightarrow \mathrm{~mL} \rightarrow \mathrm{~L} \\
& 3 \\
& 161 \mathrm{in}^{3} \times \frac{2.54 \mathrm{~cm}^{3}}{\mathrm{l}^{3} \mathrm{in}^{3}} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}=2.638317304 \mathrm{~L} \\
&=2.64 \mathrm{~L}
\end{aligned}
$$

e) 5.6×10^{15} ton $\rightarrow \mathrm{Kg}$

Road map

$$
\begin{aligned}
& \text { ton } \rightarrow \mathrm{IV} \underset{\text { def }}{\longrightarrow} g \rightarrow \mathrm{Kg}_{4}
\end{aligned}
$$

$$
\begin{aligned}
& 5.03032 \times 10^{18} \mathrm{~kg} \\
& 5.1 \times 10^{18} \mathrm{~kg}
\end{aligned}
$$

f) $32.0 \mathrm{lbs} \rightarrow \mathrm{kg}$

Rood map

$$
\begin{aligned}
\begin{aligned}
& 3^{\text {lbs }} \rightarrow g \xrightarrow[\mathrm{gg}]{9} \frac{\text { def }}{} \\
& 32.0165 \times \frac{453.6 \mathrm{~g}}{1165} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=14.5752 \mathrm{~kg} \\
&=14.5 \mathrm{~kg}
\end{aligned}
\end{aligned}
$$

g) 5.00 grain $\rightarrow \mathrm{mg} \quad(1$ grain $=0.0022902)$

Road Map.
grain $\rightarrow \mathrm{OZ} \longrightarrow$ lbs $\longrightarrow g \rightarrow \mathrm{mg}$

$$
\begin{aligned}
5_{5.00} \text { grain } \times \frac{0.002^{3} 2902}{1 \text { grain }} \times & \frac{1_{16 s}^{165}}{1602} \times \frac{453.6 \mathrm{~g}}{116 s} \times \frac{1000 \mathrm{mg}}{\lg } \\
& =324.6075 \mathrm{mg} \\
& =325 \mathrm{mg}
\end{aligned}
$$

81) An instructor is preparing an experiment, he requires 225 g of phosphoric acid. The only contamer available is a $150-\mathrm{mL}$ Erlenmeyer flask. Is it large enough to contain the acid whore density is $1.83 \mathrm{~g} / \mathrm{mt}$?
Rood map

$$
\begin{aligned}
& g \rightarrow m L \\
& 225 \mathrm{~g} \text { Phosphoric acid } \times \frac{3}{1.82}=122.9508197 \mathrm{~mL} \\
& =123 \mathrm{~mL} \\
& \text { yes } 150-\mathrm{ml} \text { flask } \\
& \text { will hold it. }
\end{aligned}
$$

91) Calculate these volumes
a) Volume 29 g Iodine $d=4.93 \mathrm{~g} / \mathrm{cm}^{3}$

Road map

$$
\begin{aligned}
&{ }_{2} g \longrightarrow \mathrm{~cm} \\
& 29 \mathrm{~g} \mathrm{I} I_{2} \times \frac{1^{3} \mathrm{~cm}^{3}}{4.93 \mathrm{~g}}=5.882352941 \mathrm{~cm}^{3} \\
&=5.9 \mathrm{~cm}^{3}
\end{aligned}
$$

b) Volume 3.28 g hydrogen $d=0.089 \mathrm{~g} /\llcorner$

Road map.

$$
3.28 \mathrm{~g} \mathrm{H} \times \frac{1_{2}}{0.089 \mathrm{~g}}=366.853933 \mathrm{~L}=37 \mathrm{~L}
$$

93) Convert $2966^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F}$ \& K

$$
\begin{aligned}
& \begin{aligned}
&{ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F} \\
& 2960^{\circ} \mathrm{C} \times \frac{180^{\circ} \mathrm{F}}{100^{\circ} \mathrm{C}}+32^{\circ} \mathrm{F}=5370 \cdot \mathrm{O}^{\circ} \mathrm{F} \\
&=5371^{\circ} \mathrm{F} \\
&{ }^{\circ} \mathrm{C} \rightarrow \mathrm{~K}
\end{aligned} \\
& 2966^{\circ} \mathrm{C}+273.15 \mathrm{~K}=3239,15 \mathrm{~K} \\
&=3239 \mathrm{~K}
\end{aligned}
$$

95) Convert $-10^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$ \& K - no decimal = ISF

$$
\begin{aligned}
&\left(\begin{array}{l}
10 \mathrm{~F} \rightarrow{ }^{\circ} \mathrm{C} \\
\left(-10^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}\right) \times \frac{100^{\circ} \mathrm{C}}{180^{\circ} \mathrm{F}}
\end{array}\right.=-23.333^{\circ} \mathrm{C} \\
&=-20^{\circ} \mathrm{C} \\
&{ }^{\circ} \mathrm{C} \rightarrow k \\
&-\frac{23.333^{\circ} \mathrm{C}}{\mathrm{t}_{\text {good to } 10 \text { place }}}
\end{aligned}
$$

97) $-28.1^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C} \& K$

$$
\begin{aligned}
&{ }^{\circ} \mathrm{F}_{3} \rightarrow{ }^{\circ} \mathrm{C} \\
&\left(-28.1^{\circ} \mathrm{F}-32 \cdot \mathrm{~F}\right) \times \frac{100^{\circ} \mathrm{C}}{180^{\circ} \mathrm{F}}=-33.38 \delta^{\circ}{ }^{\circ} \mathrm{C} \\
&=-33.4^{\circ} \mathrm{C}
\end{aligned}
$$

${ }^{\circ} \mathrm{C} \rightarrow K$
$-33.38^{\circ} \bar{\delta}^{\circ} \mathrm{C}+273.15=239.76111 \mathrm{~K}$
τ good to tenthes

