XVI. Acids and Bases (Chapter 8)

A. The Bronsted-Lowery Definition

- 1. There are many definitions for acids.
 - a) The Bronsted-Lowery definition is useful for us:

Acids- H⁺ donor. (Note: The hydrogen ion H⁺ is referred to as a "proton" since this ion consists of a single proton. Therefore, acids are also referred to as "proton donors". This is not to be confused with thinking that the ion comes from a nucleus of an atom.)

Bases- H+ acceptors.

2. Some common acids:

- a) HCl- muriatic acid, hydrochloric acid; found in the stomach.
- b) H₂SO₄- sulfuric acid; found in car batteries.
- c) HC₂H₃O₂- acetic acid; found in vinegar.
- d) H₃PO₄- phosphoric acid; found in soft drinks.
- e) HNO₃- nitric acid; used in industry.

3. Acids give off H⁺

a) Strong acids such as HCl give off H⁺ simply by adding it to water:

$$HCl(aq) + H_2O \longrightarrow H_3O^+ + Cl^-$$

b) Weak acids such as HC₂H₃O₂ do not give off H⁺ as easily when added to water.

4. Some common bases:

- a) NaOH- sodium hydroxide, lye; found in drain cleaners.
- b) KOH- potassium hydroxide.
- c) Mg(OH)₂- magnesium hydroxide, milk of magnesia.

B. Acid/Base Reactions.

1. General reaction:

$$HA + MOH \longrightarrow H_2O + MA$$

a) Example:

- 2. Reactions between acids and bases: neutralization.
 - a) The formation of water drives the reaction towards completion.
 - b) Complete the following molecular equations, then write the net-ionic equations:

ii)
$$HC_2H_3O_2(aq) + NaOH(aq) \longrightarrow$$

3. For the following reactions identify the conjugate acid/base pairs.

a)
$$HC1 + H_2O ---> H_3O^+ + CI^-$$

b)
$$HSO_4^- + HCO_3^- ---- > SO_4^{2-} + H_2CO_3$$

c)
$$HSO_4^- + HClO_4 \longrightarrow H_2SO_4 + ClO_4^-$$

d)
$$NH_3 + CH_3^- ----> CH_4 + NH_2^-$$

- 4. a) What is the conjugate base for the HCO₃ ion? (What does the hydrogen carbonate ion turn into upon acting as an acid?
 - b) What is the conjugate acid of water? (What does water turn into when it acts as a base?)
 - c) What is the conjugate base of water?
 - d) What is the conjugate acid of NH_3 ?
 - e) What is the conjugate base of NH₃?

C. The pH of Strong Acids

b)

1. Evaluate the following:

a)
$$\log 1 =$$

d)
$$\log 1000 =$$

e)
$$\log .1 =$$

f)
$$\log .01 =$$

g)
$$\log 4.71 =$$

h)
$$\log (4.71 \times 10^1) =$$

i)
$$\log (4.71 \times 10^2) =$$

j)
$$\log (3.74 \times 10^{-4}) =$$

k)
$$\log .0000571 =$$

2. Evaluate the following:

c) antilog
$$-3 =$$

$$10^{x} = 1$$

x =

x =

x =

$$10^{x} = 10$$

$$10^{x} = 100$$

$$10^{x} = 1000$$

$$10^{x} = .1$$

$$10^{x} = .01$$

f) antilog
$$-4.55 =$$

- 3. pH is defined as: $pH = -log [H_3O^+]$ where [] represent concentration in molarity.
 - a) Memorize the pH equation.
 - b) Calculate the pH for solutions containing the following [H₃O⁺].

$$[H_3O^+] = .1M$$

$$pH = -log [H3O+] =$$

$$[H_3O^+] = .01M$$

$$[H_3O^+] = .001M$$

$$[H_3O^+] = .0001M$$

- c) A solution of pH 1 contains ____ times (more/less) H₃O⁺ than a solution of pH 2.
- d) A solution of pH 1-contains $\underline{}$ times (more/less) H_3O^+ than a solution of pH 3.
- 4. pH calculations for strong acids (HNO₃, HCl) are easy since strong acids ionize 100% into hydronium ion. Calculate the pH for the following solutions:
 - a) $9.7 \times 10^{-3} M HC1$

b) .015M HCl.

c) $5.78 \times 10^{-5} M \text{ HNO}_3.$

D. The pH of Strong Bases

- 1. pH calculations of strong bases take more work since the strong base dissociates into OH^- , not H_3O^+ .
- 2. The strong bases we will consider are Group IA metallic hydroxides (LiOH, NaOH, KOH) and Ba(OH)₂.
- 3. $[H_3O^+]$ is related to [OH] for aqueous solutions by the equation: $[H_3O^+]$ [OH] = 1.00 x 10⁻¹⁴
 - a) Memorize this equation
 - b) Calculate the pH for the following solutions:
 - i) $7.88 \times 10^{-5} \text{M NaOH}$

ii) $8.95 \times 10^{-3} M \text{ KOH}$

iii) .0029M Ba(OH)₂

- E. Calculating [H₃O⁺] and [OH] from pH.
 - 1. $[H_3O^+] = 10^{-pH}$ ($[H_3O^+] = antilog -pH$)
 - a) Memorize this equation.
 - 2. Calculate [H₃O⁺] given the following information:
 - a) pH = 7.00
 - b) pH = 11.00
 - c) pH = 3.31
 - d) pH = 9.65
 - 3. Once $[H_3O^+]$ is calculated, $[OH^-]$ can be calculated using the equation $[H_3O^+][OH^-] = 1.00 \times 10^{-14}.$
 - 4. A solution has a pH of 2.90. Calculate [H₃O⁺] and [OH⁻].

F. Titration

1. It is found that 14.5 mL of .687M NaOH neutralizes 23.7 mL of HCl. Calculate the molarity of the HCl solution.

2. In a laboratory titration 15.0 mL of .275M H_2SO_4 neutralizes 20.0 mL of NaOH. What is the molarity of the NaOH solution?

3. 89.5 mL of .027M Ba(OH)₂ neutralizes 32.3 mL of a solution of HNO₃. Calculate the molarity of the acid.